# Wind Turbine Efficiency — Ranked, with Deep Analysis # 풍력발전기 효율 순위 — 심층 분석 > Eco-Friendly Solar Energy Tech

Go to Body
All Search in Site

Member Login

Count Vister

Today
30,425
Yesterday
30,600
Maximum
48,407
All
1,355,714

Eco-Friendly Solar Energy Tech


Eco # Wind Turbine Efficiency — Ranked, with Deep Analysis # 풍력발전기 효율 순위 — 심층 분석

Page Info

Writer AndyKim1 Hit 2,005 Hits Date 25-11-06 17:09
Comment 0 Comments

Content

# Wind Turbine Efficiency — Ranked, with Deep Analysis

# 풍력발전기 효율 순위 — 심층 분석

---

## ENGLISH

### How we rank “efficiency”

* **Aerodynamic efficiency (power coefficient, (C_p))**: fraction of wind power captured by the rotor (Betz limit = 0.593). Best single-number to compare *types*.
* **System/Net efficiency**: (C_p) × drivetrain (gearbox/direct-drive) × generator/inverter × availability.
* **Capacity factor** is site/weather dependent (offshore tends to be higher) and is shown separately.

Below is a **type-level ranking by *best-achievable* (C_p)** (and typical ranges), plus practical notes.

### 1) Modern 3-blade Horizontal-Axis Turbines (HAWT, utility-scale) — ⭐ Best

* **Peak (C_p)**: **0.48–0.52** (lab/field peak); **0.42–0.48** in typical operation.
* **Why they win**: optimized airfoils, slender blades with high tip-speed ratio (TSR 6–9), low tip losses via modern control (pitch/yaw), and excellent wake management at scale.
* **System efficiency**: high—direct-drive PM or efficient gearboxes; overall >0.9 from shaft to grid.
* **Capacity factor**: onshore ~25–40%; **offshore fixed-bottom often 40–55%**, sometimes higher at superb sites.

### 2) 2-blade HAWT (utility-scale/experimental)

* **Peak (C_p)**: **0.44–0.50** (aerodynamically close to 3-blade).
* **Trade-offs**: lower mass/CapEx but higher acoustic/structural loads due to cyclic pitching; today less common at utility scale.

### 3) Multi-Rotor HAWT (several small rotors on one frame)

* **Per-rotor (C_p)**: ~**3-blade HAWT levels** (0.45±).
* **System note**: not a different rotor physics—benefit is structural/material efficiency and wake tuning, not a higher intrinsic (C_p).

### 4) Ducted/Diffuser-Augmented Turbines (DAWT, shrouded)

* **Headline**: Rotor-area (C_p) can appear **>0.6** because the shroud accelerates flow; but if you count the **effective capture area** (duct frontal area), **true (C_p)** is typically **below 3-blade HAWT**.
* **Use case**: niche sites, noise/aesthetic constraints. Added drag, weight, and cost often offset gains.

### 5) Darrieus VAWT — Straight-blade “H-rotor” (lift-based)

* **Peak (C_p)**: **0.35–0.40** (best designs), more commonly **0.30–0.35** for small/medium units.
* **Pros**: simple head (no yaw), workable in mixed directions.
* **Cons**: sensitivity to dynamic stall; torque ripple unless carefully tuned; siting critical.

### 6) Darrieus/Gorlov — **Helical** VAWT (twisted blades)

* **Peak (C_p)**: **0.25–0.35**.
* **Pros**: smoother torque, lower vibration vs straight H-rotor, tolerant of direction shifts.
* **Cons**: lower peak (C_p); many rooftop/urban installs underperform due to low, turbulent winds.

### 7) Hybrid lift-drag VAWT (e.g., Lenz-type)

* **Peak (C_p)**: **0.20–0.30**.
* **Note**: improved self-start and robustness, but added drag caps efficiency.

### 8) Savonius (drag-based, S-shaped)

* **Peak (C_p)**: **0.10–0.20** (often ~0.12–0.18).
* **Pros**: very high starting torque, simple, quiet.
* **Cons**: low (C_p) by physics; best for pumps, signage power, or harsh micro-sites—not kWh maximization.

---

### Quick cheat-sheet (by best (C_p))

1. **3-blade HAWT (utility)**: 0.48–0.52
2. **2-blade HAWT**: 0.44–0.50
3. **Multi-rotor HAWT**: ~HAWT levels (per rotor)
4. **Ducted/DAWT**: *apparent* >0.6 (rotor-area basis), **true** < HAWT when area counted properly
5. **Darrieus H-rotor VAWT**: 0.35–0.40 (typ. 0.30–0.35)
6. **Helical (Gorlov) VAWT**: 0.25–0.35
7. **Hybrid lift-drag VAWT**: 0.20–0.30
8. **Savonius**: 0.10–0.20

---

### Practical guidance

* If your goal is **maximum kWh/LCOE** at decent wind sites → **3-blade HAWT** wins.
* **Urban/rooftop**: wind quality is usually the limiter; even with a lower-(C_p) VAWT, siting (edges/corners, height) and honest resource assessment dominate results.
* **Offshore**: same rotor physics as onshore HAWT, but **capacity factor** is typically much higher due to steadier, stronger winds.
* **Micro-power/education/robustness**: Savonius/hybrid can be ideal despite low (C_p).

---

## 한국어

### 효율 정의(순위 기준)

* **공력 효율((C_p))**: 로터가 바람 에너지를 전기로 바꾸는 1차 지표(베츠 한계 0.593).
* **시스템 효율**: (C_p) × 동력전달계 × 발전기/인버터 × 가동률.
* **설비이용률(용량계수)**은 입지(풍황)에 크게 좌우되므로 별도 참고.

### 타입별 순위 (최고 달성 (C_p) 기준)

1. **3엽 수평축(HAWT, 유틸리티)** — **최고**

* **피크 (C_p)**: **0.48–0.52**, 일반 운전 **0.42–0.48**
* **이유**: 고TSR, 저손실, 정교한 피치/요 제어, 대형화에 따른 스케일 이점
* **설비이용률**: 육상 ~25–40%; **해상 고정식 40–55%+**

2. **2엽 HAWT**

* **피크 (C_p)**: **0.44–0.50**
* 장점(경량) vs 단점(진동/소음/피로) 트레이드오프

3. **멀티로터 HAWT**

* **로터별 (C_p)**: 3엽 HAWT와 유사
* 구조/유지비 최적화 목적, 물리적 (C_p) 자체가 더 커지는 것은 아님

4. **덕트/디퓨저 보강(DAWT)**

* **로터면적 기준 (C_p)**: **0.6 초과처럼 보일 수 있음**
* **하지만** 덕트 정면적(실질 포획 면적)으로 환산하면 **HAWT보다 낮은 경우 다수**
* 무게/드래그/비용 증가 고려 필요

5. **다리우스 VAWT(직선 H-로터)**

* **피크 (C_p)**: **0.35–0.40** (일반 **0.30–0.35**)
* 동특성/토크맥동 관리가 관건, 입지 민감

6. **다리우스/고를로프 — 나선형 VAWT**

* **피크 (C_p)**: **0.25–0.35**
* 토크가 부드럽고 난류 허용도↑, 그러나 피크 효율은 낮음

7. **하이브리드 양·항력 VAWT(Lenz 등)**

* **피크 (C_p)**: **0.20–0.30**

8. **사보니우스(항력형)**

* **피크 (C_p)**: **0.10–0.20**
* 기동 토크↑, 구조 단순—소형/교육/특수현장 적합, 대량 kWh 목적엔 비효율

**요약표(최고 (C_p))**: 3엽 HAWT(0.48–0.52) > 2엽 HAWT(0.44–0.50) > 멀티로터(≈HAWT) > DAWT(실효면적 고려 시 HAWT 미만) > 다리우스 H-로터(0.35–0.40) > 나선형 VAWT(0.25–0.35) > 하이브리드(0.20–0.30) > 사보니우스(0.10–0.20)

---

## 日本語

### 効率の指標

* **(C_p)**(出力係数)で基本順位付け。
* システム損失と**設備利用率**は参考。

### ランキング(最高到達 (C_p))

1. **3枚翼 HAWT(大型)**:**0.48–0.52**(運用 0.42–0.48)
2. **2枚翼 HAWT**:**0.44–0.50**
3. **マルチローター HAWT**:各ローターは HAWT 並み
4. **ダクト/ディフューザ付(DAWT)**:ローター面基準では>0.6に見えるが、**実効面積**では HAWT 未満が一般的
5. **ダリウス VAWT(直線 H 型)**:**0.35–0.40**(一般0.30–0.35)
6. **ダリウス/ゴルロフ(ヘリカル)VAWT**:**0.25–0.35**
7. **ハイブリッド揚力+抗力 VAWT**:**0.20–0.30**
8. **サボニウス**:**0.10–0.20**

**実務メモ**:最大kWh/低LCOE志向→3枚翼HAWT。都市屋上は風質がボトルネックで、VAWTでも設置位置最適化が最重要。

---

## 中文

### 效率口径

* 以**功率系数 (C_p)**(贝茨极限 0.593)作为主要排名标准;系统/并网损耗与**年利用小时/容量因子**为参考。

### 按“可达最高 (C_p)”排序

1. **三叶片 HAWT(大型)**:**0.48–0.52**(常规运行 0.42–0.48)
2. **两叶片 HAWT**:**0.44–0.50**
3. **多转子 HAWT**:单转子 (C_p)≈三叶片 HAWT
4. **导管/扩压器增强(DAWT)**:对“转子面积”可显>0.6,但按**有效捕获面积**折算通常低于 HAWT
5. **达里厄斯 VAWT(直叶 H 型)**:**0.35–0.40**(常见0.30–0.35)
6. **达里厄斯/戈尔洛夫—螺旋 VAWT**:**0.25–0.35**
7. **混合升阻式 VAWT**:**0.20–0.30**
8. **萨沃纽斯(阻力型)**:**0.10–0.20**

**建议**:追求最低度电成本与最高发电量→三叶片 HAWT;城市屋顶更关注风资源与安装位置优选,机型差异次之。

---

### Want a quick picker for your site?

Tell me your **hub height, average wind speed (m/s), turbulence level, footprint limits, and noise constraints**. I’ll estimate **expected (C_p), net output, and capacity factor** for 2–3 candidate types and suggest the best match.

List of comments

No comments

Copyright © SaSaSak.net All rights reserved.