# China’s Airborne Power Generation (High-Altitude “Sky” Power) # 중국의 공중 발전(고고도 ‘하늘’ 발전) 정리 > Eco-Friendly Solar Energy Tech

Go to Body
All Search in Site

Member Login

Count Vister

Today
18,089
Yesterday
30,600
Maximum
48,407
All
1,343,378

Eco-Friendly Solar Energy Tech


Eco # China’s Airborne Power Generation (High-Altitude “Sky” Power) # 중국의 공중 발전(고고도…

Page Info

Writer Joshuaa Hit 150 Hits Date 26-01-26 00:22
Comment 0 Comments

Content

# China’s Airborne Power Generation (High-Altitude “Sky” Power)

# 중국의 공중 발전(고고도 ‘하늘’ 발전) 정리

---

## ENGLISH (Primary) — What “Airborne Power Generation” means in China

In China, **“공중 발전” most commonly refers to Airborne Wind Energy (AWE)**:
systems that harvest stronger, steadier wind **hundreds of meters to a few kilometers above the ground** using **tethered flying devices** (kite-like wings or helium airships), instead of fixed wind turbine towers.

China has been actively field-testing multiple AWE approaches in **2024–2026**, ranging from **tethered airships with onboard generators** to **kite/umbrella systems that drive ground equipment**.

---

# 1) Why China is pushing “airborne wind power” now

### (1) Stronger and steadier wind at higher altitude

Conventional onshore wind turbines typically capture wind at hub heights around **~80–150m**.
Airborne systems aim at **>300m up to 1,000m+** (and sometimes several km), where wind can be:

* more stable (less turbulence from terrain/buildings)
* stronger on average (higher energy density)

### (2) Less tower material, faster deployment

If you remove the tower (steel + concrete foundation), in theory you can:

* reduce material and construction time
* deploy in remote areas where tower logistics are difficult
* use it as **temporary / emergency power**

### (3) Fits China’s “new energy” experimentation culture

China already runs massive wind/solar projects, so it has:

* supply chain strength (materials, power electronics)
* large test regions (desert, grassland, remote bases)
* grid engineering capability to test novel generators

---

# 2) The 3 main “airborne wind” architectures China is testing

## A) Buoyant Airborne Turbine (BAT): Helium airship + generator onboard

This type is essentially a **kite-like blimp** lifted by helium.
It carries wind turbines/generators and sends electricity down through **tethers**.

### Key China example: **S500**

* Reported to rise to **~500 meters** and generate power **>50 kW** during a test flight. ([english.cas.cn][1])
* Described as a **kite-like airship** that transmits electricity down to the ground through tethers. ([english.cas.cn][1])
* Developed with collaboration including **Tsinghua University** and **CAS Aerospace Information Research Institute**. ([english.cas.cn][1])
* Intended use cases explicitly mentioned: **emergency rescue**, surveying/mapping, urban security—quick launch after disasters for on-site power + communications. ([english.cas.cn][1])

**What BAT is good at**

* Rapid deployment
* Disaster response / temporary grid support
* Remote stations needing quick power

**Hard parts**

* Helium management (leak prevention, cost)
* Safe tether handling in wind gusts
* Airspace coordination and lightning protection

---

## B) Floating megawatt-class airborne wind system: “Giant airship platform” with multiple turbines

This is the “big ambition” path: a large floating platform with multiple turbine units.

### Key China example: **S1500 (SAWES)**

Tsinghua University’s Electrical Engineering department released detailed public info on S1500:

* Maiden flight completed **Sep 19–21, 2025** at Naomao Lake base in **Hami, Xinjiang**. ([清华大学电机工程与应用电子技术系][2])
* Reported as the **largest and highest-power floating high-altitude wind device** at that time. ([清华大学电机工程与应用电子技术系][2])
* Size: **60m (L) × 40m (W) × 40m (H)**. ([清华大学电机工程与应用电子技术系][2])
* Hardware: **12 interconnected 100-kW turbine units** → designed rated power **>1 MW**. ([清华大学电机工程与应用电子技术系][2])
* Electricity is transmitted to the ground grid via **high-strength lightweight tether cables**. ([清华大学电机工程与应用电子技术系][2])

**Why this design matters**

* Multiple small generators can be easier to manage than one massive rotor.
* The “ducted/ring-wing” aerodynamic shape aims to improve stability + capture efficiency. ([清华大学电机工程与应用电子技术系][2])

**Hard parts**

* Structural stability in strong winds
* Long-duration operation (days/months) without excessive maintenance
* Grid-quality power conversion from a moving platform (power electronics + control)

---

## C) Land-based “umbrella-ladder” high-altitude wind: flying device drives ground conversion

This approach can be simpler in some ways because **heavy equipment stays on the ground**.

China has described an “umbrella-ladder” concept where:

* an umbrella-like unit ascends above **300m**
* unfolds to capture wind
* drives ground equipment to convert wind → mechanical → electricity ([중국 국가 지적 재산권국][3])

### Key China example: **Jixi (Anhui) high-altitude wind demonstration**

A Chinese state-asset authority (SASAC) report states:

* The **Jixi high-altitude wind power generation demonstration project** in Anhui started operation **Jan 7, 2024**. ([SASAC][4])

This is important because it suggests the concept is not purely lab-scale; it is being trialed as a demonstrative project.

---

# 3) How airborne wind power actually generates electricity (simple mechanics)

Even if the shapes differ, most systems share the same chain:

1. **Launch / climb**
  Winch + lift (helium or aerodynamic lift) gets it to operating height.

2. **Power harvesting**
  Wind energy is converted into rotation (turbine) or mechanical tension cycles.

3. **Conversion + conditioning**
  Electricity needs stable voltage/frequency → power electronics manage fluctuations.

4. **Transmission down the tether**
  The tether is not “just a rope”:

  * mechanical strength member (holds load)
  * electrical conductors (carry power)
  * sometimes data fiber for sensors/control

5. **Retrieval & safe shutdown**
  In storms, icing, lightning risk, aviation conflicts → system must descend quickly.

---

# 4) The biggest engineering problems (what decides success or failure)

## (1) Safety and airspace integration

AWE must not conflict with:

* civil aviation routes
* military airspace
* drones / emergency helicopters

It often requires:

* designated test zones
* radar/ADS-B awareness and strict operational rules

## (2) Extreme weather and lightning

High altitude means higher exposure to:

* lightning strike probability
* sudden wind shear and gust loads
* icing conditions

Fail-safe design must include:

* emergency reel-in
* safe grounding
* controlled descent

## (3) Tether fatigue + wear = the “hidden killer”

Tethers endure:

* cyclic load
* abrasion
* bending fatigue
* electrical heating

Industrial success requires “boring reliability,” not just spectacular demo flights.

## (4) Grid quality (power electronics and control)

Airborne wind output fluctuates more than tower-based turbines due to motion.
So a practical system needs:

* DC conversion + inverter stabilization
* ramp-rate control (avoid sudden jumps)
* storage coupling (battery/supercap) in some scenarios

## (5) Maintenance and operations at scale

A paper on high-altitude wind power station operations highlights that:

* operation & maintenance design is still an emerging field
* centralized monitoring, digital recordkeeping, and safety monitoring are crucial. ([energychina.press][5])

In short: the “software + monitoring stack” matters as much as the aerodynamics.

---

# 5) Where China can realistically use airborne wind first

**Best early adoption niches**

1. **Emergency power + communications support**
  Explicitly mentioned for S500 disaster scenarios. ([english.cas.cn][1])

2. **Remote microgrids**
  Desert, plateau, border regions where towers are expensive

3. **Temporary construction power**
  Mining sites, large infrastructure builds (short-to-mid term use)

4. **Hybrid systems**
  Airborne wind + solar + battery → smoother supply

---

# 6) Practical meaning: Is airborne wind “the future of wind”?

Airborne wind is promising, but its future depends on whether it can beat conventional wind on:

* **cost per kWh**
* **availability (uptime)**
* **safety compliance**
* **maintenance burden**

China’s 2024–2026 demos show real momentum:

* S500’s altitude and kW-class generation test ([english.cas.cn][1])
* S1500’s megawatt-class platform and large-scale engineering details ([清华大学电机工程与应用电子技术系][2])
* Jixi’s operational demonstration project framing ([SASAC][4])

That combination suggests China is tackling both **“quick deployment prototypes”** and **“grid-scale ambitions”** in parallel.

---

---

## 한국어 — 중국의 “공중 발전(고고도 하늘 발전)”을 쉽게 정리

중국에서 말하는 **공중 발전**은 대부분 **공중(고고도) 풍력 발전(Airborne Wind Energy, AWE)** 을 뜻합니다.
즉, 풍력 타워를 세우는 대신 **연(카이트)·우산형 날개·헬륨 비행선(에어십)** 같은 장치를 **케이블(테더)로 묶어서 하늘에 띄우고**, 수백 m~수 km 고도의 바람으로 발전하는 방식입니다.

---

# 1) 중국이 공중 풍력을 밀어붙이는 이유

### (1) 높은 고도 바람은 더 강하고 더 일정한 경우가 많음

지상 풍력은 대개 80~150m 정도 높이에서 바람을 받는데,
공중 풍력은 **300m 이상**의 바람을 노립니다. ([중국 국가 지적 재산권국][3])

### (2) 타워가 없어지면 자재·시공 부담이 줄 가능성

풍력 타워는 철과 콘크리트가 매우 많이 들어가고 운송도 어렵습니다.
공중 풍력은 “타워 대신 테더+비행체”로 접근합니다.

### (3) 재난·원격 지역 전력에 강함

특히 “급히 띄워서 전력·통신을 확보하는” 용도가 현실적입니다.

---

# 2) 중국이 실험 중인 3가지 대표 구조

## A) 헬륨 비행선형(BAT): 하늘에서 발전하고 전기를 줄로 내려보냄

대표 예시: **S500**

* **약 500m 고도**까지 상승해 발전 테스트를 했고
* 발전 출력이 **50kW 이상**이라고 공개되었습니다. ([english.cas.cn][1])
* 비행선이 **발전기**를 들고 올라가고, 전기는 **테더를 통해 지상으로 전달**하는 구조로 설명됩니다. ([english.cas.cn][1])
* 개발 협력: **칭화대 + 중국과학원(CAS) 산하 연구기관** 등이 언급됩니다. ([english.cas.cn][1])
* 용도: 지진/홍수 같은 상황에서 **빠르게 띄워 현장 전력·통신 유지** 목적이 명시됩니다. ([english.cas.cn][1])

**강점**

* 빠른 전개(재난 대응)
* 원격지 임시 전력

**약점**

* 헬륨/기상/낙뢰/항공 안전 이슈
* 테더 내구성과 안전회수가 관건

---

## B) 메가와트급 공중 플랫폼(SAWES): 거대 공중 구조물 + 다수 발전기

대표 예시: **S1500**
칭화대 전기공학과 공개 자료 기준:

* **2025년 9월 19~21일** 신장(新疆) 하미(哈密) 시험기지에서 **초도 비행** 성공 ([清华大学电机工程与应用电子技术系][2])
* 크기: **길이 60m × 폭 40m × 높이 40m** ([清华大学电机工程与应用电子技术系][2])
* 발전 유닛: **100kW급 12개** → 설계 정격 **1MW 초과** ([清华大学电机工程与应用电子技术系][2])
* 전력은 **고강도 경량 테더 케이블로 지상 그리드에 안전하게 전달**하는 형태 ([清华大学电机工程与应用电子技术系][2])

**핵심 의미**

* “실험 장난감 수준”이 아니라 **전력 산업 스케일**을 노리는 설계라는 점
* 공중에서 흔들리는 시스템의 전력 안정화(인버터/제어/계통 연계)가 승부처

---

## C) 지상형 우산-사다리(umbrella-ladder): 하늘에서 바람을 잡고 지상 장비로 발전

중국의 공식/준공식 소개에서는 다음 구조가 언급됩니다:

* **300m 이상 고도**로 상승
* 우산형 장치가 펼쳐져 바람을 받고
* **지상 장비에서** 기계→전기로 변환 ([중국 국가 지적 재산권국][3])

대표 사례: **안후이(安徽) 지시현(Jixi) 실증 프로젝트**

* 중국 국유자산감독 관련 공식 페이지에서
  **2024년 1월 7일 운영 시작**으로 소개됩니다. ([SASAC][4])

---

# 3) 공중 풍력 발전이 돌아가는 실제 흐름(실무 관점)

1. **발사/상승**: 윈치로 케이블을 풀거나, 헬륨/양력으로 상승
2. **발전 모드**: 공중에서 회전 발전(또는 장력 사이클)
3. **전력 안정화**: 공중 발전은 흔들림이 커서 전력변환(인버터)이 핵심
4. **테더 전송**: 테더는 “줄”이 아니라

  * 하중을 버티는 구조체
  * 전력 케이블
  * 제어/센서 통신선까지 포함될 수 있음
5. **회수/비상 하강**: 돌풍/낙뢰/항공 위험 시 즉시 회수 필요

---

# 4) 성공을 가르는 가장 큰 난제 5개

1. **항공 안전/공역 규정**(민항·군·드론 충돌 방지)
2. **낙뢰/결빙/폭풍 대응**(비상회수 신뢰성)
3. **테더 내구성**(피로·마모·열·절연)
4. **계통 연계 품질**(출력 변동을 전력전자기술로 안정화)
5. **운영·정비 체계**(모니터링/기록/정비 이력/안전 자동화)

운영·정비가 아직 “신규 영역”이라는 점도 연구에서 강조됩니다. ([energychina.press][5])

---

# 5) 중국에서 가장 먼저 현실화될 사용처(가능성이 높은 순)

1. **재난/긴급 전력 + 통신 유지**(S500 목적에 명시) ([english.cas.cn][1])
2. **전력 인프라가 약한 원격지 마이크로그리드**
3. **단기 공사현장/임시 기지 전력**
4. **태양광+배터리와 하이브리드 구성**(변동성 완화)

---

---

## 日本語 — 中国の「空中発電(高高度風力)」要点

中国でいう空中発電は主に **Airborne Wind Energy(空中風力)**。
凧・傘型翼・ヘリウム飛行船をテザーで係留し、**300m以上**の安定した風で発電します。 ([중국 국가 지적 재산권국][3])

* **S500(飛行船型)**:約500mで>50kWの発電テストが報告。災害時の電力・通信確保用途も明記。 ([english.cas.cn][1])
* **S1500(メガワット級)**:2025年9月に新疆で初飛行。60×40×40m、100kW×12で>1MW設計。 ([清华大学电机工程与应用电子技术系][2])
* **安徽・績溪(傘‐梯子方式)**:2024年1月7日に運用開始と紹介。 ([SASAC][4])

勝負は「テザー耐久」「気象安全」「電力品質(インバータ制御)」。

---

## Español — China y la generación “aérea” (viento de gran altitud)

En China, “generación en el aire” suele significar **energía eólica aerotransportada (AWE)**:
dispositivos tipo cometa o dirigible con cable (tether) que capturan viento por encima de **300 m**. ([중국 국가 지적 재산권국][3])

* **S500 (dirigible con helio)**: pruebas a ~500 m y potencia >50 kW; pensado para rescate y energía rápida en desastres. ([english.cas.cn][1])
* **S1500 (megavatio)**: vuelo inicial en Xinjiang (sep 2025); 60×40×40 m; 12 turbinas de 100 kW → >1 MW diseñado; energía baja por cables. ([清华大学电机工程与应用电子技术系][2])
* **Proyecto Jixi (Anhui)**: ejemplo de demostración con operación indicada en 7 ene 2024. ([SASAC][4])

Los retos clave: seguridad aérea, tormentas/relámpagos, fatiga del cable y estabilidad eléctrica.

---

## Français — Chine : “production électrique aérienne” (éolien de haute altitude)

En Chine, la “production aérienne” désigne surtout **l’éolien aéroporté (AWE)** :
un système captant le vent à **plus de 300 m** avec un dispositif volant relié par un câble. ([중국 국가 지적 재산권국][3])

* **S500 (aérostat/dirigeable)** : montée ~500 m, puissance >50 kW, usage évoqué pour secours et alimentation rapide après catastrophes. ([english.cas.cn][1])
* **S1500 (classe mégawatt)** : essai de vol initial au Xinjiang (sept 2025), dimensions 60×40×40 m, 12×100 kW, puissance conçue >1 MW, transmission via câble. ([清华大学电机工程与应用电子技术系][2])
* **Démonstrateur Jixi (Anhui)** : démarrage d’exploitation indiqué au 7 jan 2024. ([SASAC][4])

Les défis : intégration dans l’espace aérien, météo extrême, fatigue du câble, qualité d’énergie injectée au réseau.

---

[1]: https://english.cas.cn/newsroom/cas_media/202410/t20241015_691775.shtml "China's Self-developed Airship Harvests Wind Power at Record Height----Chinese Academy of Sciences"
[2]: https://www.eea.tsinghua.edu.cn/en/info/1038/3497.htm "Megawatt-Class High-Altitude Wind Power System Jointly Developed by Tsinghua EEA Successfully Completed Maiden Flight in Xinjiang-Department of Electrical Engineering Tsinghua University"
[3]: https://english.cnipa.gov.cn/art/2025/12/26/art_3090_203298.html?utm_source=chatgpt.com "Dec 26,2025"
[4]: https://en.sasac.gov.cn/2024/01/17/c_16551.htm?utm_source=chatgpt.com "China's 1st High-Altitude Wind Power Project Starts ..."
[5]: https://www.energychina.press/en/article/doi/10.16516/j.ceec.2024-370?translate=true "Research and Design of High Altitude Wind Power Station Operation and Maintenance Auxiliary System "

List of comments

No comments

Copyright © SaSaSak.net All rights reserved.